Effect of leaf water deficit on stomatal and nonstomatal regulation of net carbon dioxide assimilation.
نویسندگان
چکیده
The effect of leaf water deficit on net CO(2) assimilation was studied under two conditions: in one, the stomata were allowed to contribute to the regulation of CO(2) assimilation; in the other, air was forced through the leaf at a constant rate to overcome the effects of change in stomatal resistance accompanying changes in leaf water deficit. When the stomata were allowed to regulate the gaseous diffusive resistance of the leaf, CO(2) assimilation decreased with increasing leaf water deficit. However, when air was forced through the leaf, the rate of assimilation was not inhibited by increasing leaf water deficit. The results indicate that the inhibition of net CO(2) assimilation with increasing leaf water deficit is a consequence of an increase in the diffusive resistance to gas exchange and not of a change in apparent mesophyll resistance.
منابع مشابه
Leaf water potential, stomatal resistance, and photosynthetic response to water stress in peach seedlings.
Individual groups of peach (Prunus persica [L.] Batsch) seedlings stressed to -17, -26 and -36 bars recovered to control levels within 1, 3, and 4 days, respectively. Stomatal resistance was significantly correlated with both leaf water potential and net photosynthesis. In seedlings stressed to -52 bars, leaf water potential and stomatal resistance recovered sooner than net photosynthesis, desp...
متن کاملPartitioning direct and indirect effects reveals the response of water-limited ecosystems to elevated CO2.
Increasing concentrations of atmospheric carbon dioxide are expected to affect carbon assimilation and evapotranspiration (ET), ultimately driving changes in plant growth, hydrology, and the global carbon balance. Direct leaf biochemical effects have been widely investigated, whereas indirect effects, although documented, elude explicit quantification in experiments. Here, we used a mechanistic...
متن کاملIncreased leaf area dominates carbon flux response to elevated CO2 in stands of Populus deltoides (Bartr.)
We examined the effects of atmospheric vapor pressure deficit (VPD) and soil moisture stress (SMS) on leafand stand-level CO2 exchange in model 3-year-old coppiced cottonwood (Populus deltoides Bartr.) plantations using the large-scale, controlled environments of the Biosphere 2 Laboratory. A short-term experiment was imposed on top of continuing, long-term CO2 treatments (43 and 120 Pa), at th...
متن کاملStomatal and nonstomatal regulation of water use in cotton, corn, and sorghum.
Stomata of corn (Zea mays L.) and sorghum (Sorghum bicolor L.) responded to changes in leaf water potential during the vegetative growth phase. During reproductive growth, leaf resistances were minimal and stomata were no longer sensitive to bulk leaf water status even when leaf water potentials approached -27 bars. Stomata of corn, cotton (Gossypium hirsutum L.), and sorghum appear to respond ...
متن کاملتأثیر تنش کم آبی، ازدیاد دیاکسید کربن و اشعه ماورای بنفش بر صفات کیفی برگ پرچم گندم دوروم ( Triticum turgidum L. var. durum Desf.)
Water deficit, ultraviolet radiation and CO2 concentration enhancement are three environmental stresses that affect nutrition of human in future. This research was conducted in the Research Greenhouse of Faculty of Agriculture, Tarbiat Modares University in 2006, in order to study leaf qualitative traits of durum wheat under different levels of carbon dioxide (400 and 900 ppm), ultraviolet radi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 55 4 شماره
صفحات -
تاریخ انتشار 1975